раздел геометрии, который исследует простейшие геометрические объекты средствами элементарной алгебры на основе метода координат. Создание аналитической геометрии обычно приписывают Р.Декарту, изложившему ее основы в последней главе своего трактата Рассуждение о методе, озаглавленной Геометрия (1637). Однако сам метод был известен П.Ферма еще в 1629, о чем свидетельствует его переписка. Аналитическая геометрия стала неоценимым подспорьем для математического анализа, изобретенного вскоре Ньютоном (1665-1666) и Лейбницем (1675-1676).
Методы аналитической геометрии применимы к фигурам на плоскости и к поверхностям в трехмерном пространстве, а также допускают естественное обобщение и на пространства более высоких размерностей. Мы начнем с аналитической геометрии на плоскости.
Сущность метода координат состоит в следующем. На плоскости задаются две взаимно перпендикулярные прямые (координатные оси), пересекающиеся в точке О, называемой началом координат. Одна из них - ось x, или ось абсцисс, обычно выбирается горизонтальной, другая - ось y, или ось ординат, - вертикальной. Справа от O выбирается точка, у которой ставится отметка 1. Если принять отрезок от O до 1 за единицу длины, то откладывая последовательно этот отрезок вдоль прямой, мы получаем числовую ось. Считается, что эта ось продолжается вправо до бесконечности. Точки на оси x слева от O помечаются отрицательными числами, как на шкале термометра. Например, точка ?2 расположена от точки O слева на таком же расстоянии, как точка 2 справа. Аналогичным образом с той же единицей длины размечается и ось y. Положительные числа располагаются выше точки O, отрицательные - ниже.
Пусть P - любая точка на плоскости с заданной системой координат, Q - основание перпендикуляра, опущенного из P на ось x, а R - основание перпендикуляра, опущенного из P на ось y. Положение точки P полностью определяется двумя числами, называемыми координатами x и y. Первая координата указывает положение точки Q на оси x, вторая - положение точки R на оси y. На рис. 1 положение точки P полностью определяется ее координатами (2,3).
Основная задача аналитической геометрии заключается в изучении геометрических фигур с помощью соотношений между координатами точек, из которых эти фигуры образованы. Любую фигуру можно рассматривать как множество точек, удовлетворяющих некоторому геометрическому условию. Это условие можно записать в виде алгебраического уравнения, связывающего координаты x и y каждой точки фигуры. Суть метода аналитической геометрии состоит в изучении свойств фигуры с помощью соответствующего уравнения, исследуемого средствами алгебры. Этот метод позволяет устанавливать геометрические факты систематичным образом, в отличие от традиционной "синтетической" геометрии, где приходилось изобретать методы доказательства для каждого отдельного случая.
Основным инструментом аналитической геометрии служит формула для вычисления расстояния между двумя точками P1 = (x1,y1) и P2 = (x2,y2). Числа x1, y1, x2 и y2 могут быть любыми действительными числами, положительными, отрицательными или 0. На рис. 2 все числа выбраны положительными. Проведем через точку P1 горизонтальную прямую, а через точку P2 - вертикальную. Пусть R - точка их пересечения. Тогда по теореме Пифагора
откуда
d 2 = (x2 - x1)2 + (y2 - y1)2.
Это и есть формула для вычисления расстояния между двумя точками.
Важно иметь в виду, что эта формула остается в силе независимо от того, как расположены точки P1 и P2. Например, если точка P2 расположена ниже точки P1 и справа от нее, как на рис. 3, то отрезок RP2 можно считать равным y1 - y2, а не y2 - y1. Расстояние между точками, вычисляемое по формуле, от этого не изменится, так как (y1 - y2)2 = (y2 - y1)2. Заметим, что так как величина y2 в этом случае отрицательна, разность y1 - y2 больше, чем y1, как и должно быть.
Прямые. Прямая - одна из простейших геометрических фигур. Алгебраическое уравнение прямой также имеет простой вид.
Пусть B = (0,b)- точка пересечения прямой L с осью y, а P = (x,y) - любая другая точка на этой прямой. Проведем через точку B прямую, параллельную оси x, а через точку P - прямую, параллельную оси y; проведем также прямую x = 1. Пусть m - угловой коэффициент прямой L (см. рис. 4). Так как треугольники BSQ и BRP подобны, то
или, после упрощения,
Следовательно, если точка P лежит на прямой L, то ее координаты удовлетворяют уравнению (1). Обратно, нетрудно показать, что если x и y связаны между собой уравнением (1), то точка P непременно лежит на прямой L, проходящей через точку (0,b) и имеющей угловой коэффициент m.
Таким образом, уравнение любой прямой можно записать в виде
В обоих случаях мы получаем уравнение первой степени. Кроме того, каждое уравнение первой степени по x и y можно привести к виду (2) либо (3).
Рассмотрим произвольное уравнение первой степени
Если B . 0, мы можем записать уравнение (4) в виде
т.е. в виде (2). При B = 0 уравнение (4) сводится к уравнению
Ax = C,
или
т.е. к уравнению вида (3).
Таким образом, любая прямая описывается уравнением первой степени по x и y, и обратно, каждое уравнение первой степени по x и y соответствует некоторой прямой.
Парабола. Методы аналитической геометрии позволяют без особых трудностей исследовать свойства кривых, которые обычно не рассматриваются в стандартных учебниках планиметрии.
Пусть заданы точка F с координатами (0,1) и прямая y = -1 (рис. 5). Множество точек P = (x,y), для которых расстояние PF равно расстоянию PD, называется параболой. Прямая y = -1 называется директрисой параболы, а точка F - фокусом параболы. Чтобы выяснить, как располагаются точки P, удовлетворяющие условию PF = PD, запишем его с помощью координат:
x2 + (y - 1)2 = (y + 1)2 + (x - x)2,
или после упрощения x2 = 4y. Это уравнение геометрического места точек, образующих параболу.
Рассмотрим теперь точки пересечения произвольной невертикальной прямой y = mx + b с параболой x2 = 4y. Точки пересечения должны иметь координаты, удовлетворяющие одновременно обоим уравнениям, поэтому
x2 = 4mx + 4b,
или
x2 - 4mx - 4b = 0.
В общем случае существуют два решения x1 и x2 квадратного уравнения. Известно, что сумма этих решений x1 + x2 равна коэффициенту при x, взятому со знаком минус. Следовательно,
x1 + x2 = 4m.
Абсцисса средней точки M хорды P1P2 равна
Результат зависит только от m и не зависит от b.
Если теперь мы рассмотрим множество параллельных прямых с одним и тем же угловым коэффициентом m, но с различными значениями b, то середины всех хорд, высекаемых на этих прямых параболой, лежат на вертикальной прямой x = 2m (см. рис. 6).
Среди этих параллельных прямых есть одна особенная прямая T, пересекающая параболу только в одной точке. Эта прямая называется касательной. Точка касания P имеет координаты (2m,m2).
Преобразование уравнений. Уравнение кривой зависит от положения координатных осей и от выбранных масштабов. Например, уравнение окружности с радиусом r единиц и с центром в начале координат имеет вид
x2 + y2 = r2.
Но если окружность расположена так, как показано на рис. 7, с центром в точке с координатами (h,k), то ее уравнение принимает более сложный вид:
(x - h)2 + (y - k)2 = r2,
в чем нетрудно убедиться, воспользовавшись формулой расстояния. Для исследования свойств кривой удобно расположить оси так, чтобы уравнение приняло по возможности более простой вид, как мы поступили в случае параболы.
До сих пор мы исследовали кривую, заданную некоторым геометрическим условием, которому должны удовлетворять все принадлежащие ей точки, и вывели уравнение относительно заданной пары координатных осей. Обратная задача состоит в том, чтобы построить кривую, соответствующую данному уравнению, и исследовать геометрические свойства этой кривой или ее графика.
Предположим, что мы хотим исследовать график кривой
Перепишем это соотношение в виде
y = x2 - 2x + 1 + 2 = (x - 1)2 + 2.
Сделав затем замену переменных x. = x - 1 и y. = y - 2, сведем (5) к следующему уравнению:
которое, конечно, гораздо проще. Теперь заданную кривую можно записать в новой системе, оси которой параллельны старым с началом координат в точке x = 1, y = 2. Помимо такого приема (называемого параллельным переносом) - сдвига осей координат по горизонтали и по вертикали на соответствующие величины, уравнения часто упрощаются после поворота системы координат на некоторый угол вокруг неподвижного начала координат O.
Оказывается, что этих двух приемов - параллельного переноса и поворота координатных осей, выполняемых по отдельности или вместе, - вполне достаточно, чтобы привести уравнение второй степени или к уравнениям двух прямых (пересекающихся, параллельных или совпадающих) или к одному из стандартных видов:
Уравнение (7) описывает параболу с фокусом в точке (0,p) и директрисой y = - p. Уравнение (8) соответствует эллипсу. Уравнение (9) описывает гиперболу (см. также КОНИЧЕСКИЕ СЕЧЕНИЯ).
Помимо исследования графиков алгебраических уравнений, аналитическая геометрия изучает также неалгебраические, или трансцендентные, кривые, например графики экспоненциальных, логарифмических и тригонометрических функций. В качестве примера трансцендентной кривой приведем циклоиду - кривую, описываемую точкой окружности, катящейся без скольжения по прямой (рис. 8). Если в качестве прямой выбрать ось абсцисс, а радиус окружности принять равным 1, то координаты точки P будут иметь вид
где . - угол в радианах.
Циклоида обладает многими замечательными свойствами. Длина дуги циклоиды в 8 раз больше, чем длина катящейся окружности, а площадь под дугой в 3 раза больше площади катящегося круга. Если циклоиду перевернуть, то мы получим форму нити, по которой бусина соскальзывала бы до данной точки за кратчайшее время. Эти результаты доказываются методами математического анализа, а последний из них - методами вариационного исчисления. Циклоиды и аналогичные кривые, возникающие при движении одной окружности по другой, играют важную роль при проектировании зубчатых передач, действующих бесшумно и эффективно. На рис. 9 вы видите несколько других кривых и их уравнения.
См. также: